بهینه‌سازی مدل دراستیک با استفاده از هوش مصنوعی جهت ارزیابی آسیب‌پذیری آب‌زیرزمینی در دشت مراغه- بناب

Authors

  • اصغر اصغری مقدم استاد، گروه زمین‌شناسی، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران
  • الهام فیجانی استادیار، دانشکده زمین‌شناسی، پردیس علوم، دانشگاه تهران، تهران، ایران
  • عطاءالله ندیری استادیار، گروه زمین‌شناسی، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران
Abstract:

ارزیابی آسیب‌پذیری آبخوان به منظور تعیین مناطق دارای پتانسیل آلودگی برای مدیریت منابع آب‌زیرزمینی از اهمیت بالایی برخوردار است. در این تحقیق، با استفاده از مدل دراستیک ارزیابی آسیب‌پذیری آب زیرزمینی در آبخوان دشت مراغه- بناب برآورد شده است. در مدل دراستیک از پارامترهای مؤثر در ارزیابی آسیبپذیری سفرۀ آب زیرزمینی شامل ژرفای سطح ایستابی، تغذیه، جنس سفره، نوع خاک، شیب توپوگرافی، مواد تشکیل‌دهندة منطقۀ غیراشباع و هدایت هیدرولیکی استفاده میشود که به صورت 7 لایه در محیط GIS تهیه شدند و با وزندهی و رتبهبندی و تلفیق 7 لایۀ یاد شده، نقشۀنهایی آسیب‌پذیری آبخوان نسبت به آلودگی، با تقسیمبندی به 3 محدودۀ آسیبپذیری کم، متوسط و زیاد تهیه و شاخص دراستیک برای کل منطقه بین 81 تا 116 برآورد شد. برای صحت‌سنجی مدل از داده‌های غلظت نیترات در منطقه استفاده شد که نتایج همبستگی نسبی با ضریب همبستگی 81/0 را برای مدل دراستیک نشان داد. به منظور بهبود نتایج مدل، از 4 روش هوش مصنوعی شامل شبکه عصبی مصنوعی، مدل فازی ساجنو و ممدانی، و مدل نروفازی استفاده شد. به این منظور داده های ورودی (پارامترهای دراستیک) و خروجی (آسیب پذیری) مدل و مقادیر نیترات مربوطه به 2 دسته آموزش و آزمایش تقسیم شد. خروجی مربوط به مرحله آموزش با مقادیر نیترات مربوطه تصحیح شد و پس از آموزش مدل، با استفاده از مقادیر نیترات نتایج مدل‌ها در مرحله آزمایش مورد ارزیابی قرار گرفت. نتایج نشان داد که تمام مدل‌های هوش مصنوعی به کار گرفته شده، قابلیت بهبود نتایج مدل دراستیک اولیه را دارند، اما در این بین، مدل نروفازی بهترین نتایج را دربرداشت و به عنوان مدل نهایی برگزیده شد. به طوری که در مرحله آزمایش، تمام چاه‌های حاوی آلودگی نیترات بالا در دسته آسیب پذیری بالا قرار گرفتند. بر اساس مدل نهایی، نواحی باختری منطقه دارای بیشترین میزان پتانسیل آلودگی هستند. همچنین، نتایج نشان داد که مدل‌های هوش مصنوعی می‌تواند به عنوان روشی کارا جهت بهینه سازی مدل دراستیک عمل کند و نتایج دقیق‌تری از برآورد پتانسیل آلودگی در منطقه مورد مطالعه را در پی داشته باشد. ارزیابی آسیب‌پذیری آبخوان به منظور تعیین مناطق دارای پتانسیل آلودگی برای مدیریت منابع آب‌زیرزمینی از اهمیت بالایی برخوردار است. در این تحقیق، با استفاده از مدل دراستیک ارزیابی آسیب‌پذیری آب زیرزمینی در آبخوان دشت مراغه- بناب برآورد شده است. در مدل دراستیک از پارامترهای مؤثر در ارزیابی آسیبپذیری سفرۀ آب زیرزمینی شامل ژرفای سطح ایستابی، تغذیه، جنس سفره، نوع خاک، شیب توپوگرافی، مواد تشکیل‌دهندة منطقۀ غیراشباع و هدایت هیدرولیکی استفاده میشود که به صورت 7 لایه در محیط GIS تهیه شدند و با وزندهی و رتبهبندی و تلفیق 7 لایۀ یاد شده، نقشۀنهایی آسیب‌پذیری آبخوان نسبت به آلودگی، با تقسیمبندی به 3 محدودۀ آسیبپذیری کم، متوسط و زیاد تهیه و شاخص دراستیک برای کل منطقه بین 81 تا 116 برآورد شد. برای صحت‌سنجی مدل از داده‌های غلظت نیترات در منطقه استفاده شد که نتایج همبستگی نسبی با ضریب همبستگی 81/0 را برای مدل دراستیک نشان داد. به منظور بهبود نتایج مدل، از 4 روش هوش مصنوعی شامل شبکه عصبی مصنوعی، مدل فازی ساجنو و ممدانی، و مدل نروفازی استفاده شد. به این منظور داده های ورودی (پارامترهای دراستیک) و خروجی (آسیب پذیری) مدل و مقادیر نیترات مربوطه به 2 دسته آموزش و آزمایش تقسیم شد. خروجی مربوط به مرحله آموزش با مقادیر نیترات مربوطه تصحیح شد و پس از آموزش مدل، با استفاده از مقادیر نیترات نتایج مدل‌ها در مرحله آزمایش مورد ارزیابی قرار گرفت. نتایج نشان داد که تمام مدل‌های هوش مصنوعی به کار گرفته شده، قابلیت بهبود نتایج مدل دراستیک اولیه را دارند، اما در این بین، مدل نروفازی بهترین نتایج را دربرداشت و به عنوان مدل نهایی برگزیده شد. به طوری که در مرحله آزمایش، تمام چاه‌های حاوی آلودگی نیترات بالا در دسته آسیب پذیری بالا قرار گرفتند. بر اساس مدل نهایی، نواحی باختری منطقه دارای بیشترین میزان پتانسیل آلودگی هستند. همچنین، نتایج نشان داد که مدل‌های هوش مصنوعی می‌تواند به عنوان روشی کارا جهت بهینه سازی مدل دراستیک عمل کند و نتایج دقیق‌تری از برآورد پتانسیل آلودگی در منطقه مورد مطالعه را در پی داشته باشد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

بهبود نتایج حاصل از مدل دراستیک با استفاده از هوش مصنوعی جهت ارزیابی آسیب پذیری آبخوان آبرفتی دشت رامهرمز

سابقه و هدف: آلودگی آب‌های زیرزمینی یک فرآیند پیچیده و پر از عدم قطعیت، در مقیاس منطقه‌ای می‌باشد. توسعه یک روش یکپارچه جهت ارزیابی آسیب‌پذیری آبخوان‌ها، می‌تواند به منظور مدیریت بهینه و حفاظت از آن‌ها کارامد باشد. دشت رامهرمز به دلیل داشتن خاک حاصلخیز و منابع آب کافی دارای زمین‌های مستعد کشاورزی است که به دلیل توسعه کشاورزی، استفاده از کودهای شیمیایی و مواد آفت‌کش‌ همواره در معرض خطر آلودگی قر...

full text

استفاده از مدل هوش مصنوعی مرکب نظارت شده برای بهبود مدل دراستیک (مطالعه موردی: آبخوان دشت اردبیل)

آلودگی منابع آب زیرزمینی به علت نفوذ آلاینده­ها از سطح زمین به سامانه آب زیرزمینی به‎ویژه در مناطق خشک و نیمه‎خشک که با کمبود کمی و کیفی منابع آب روبه‌رو هستند؛ یکی از معضلات جدی به شمار می­آید. بنابراین ارزیابی آسیب­پذیری آب زیرزمینی به منظور شناسایی مناطق دارای پتانسیل بالای آلودگی برای مدیریت منابع آب زیرزمینی ضروری است. در این پژوهش آسیب­پذیری آبخوان دشت اردبیل در برابر آلودگی با استفاده از...

full text

ارزیابی آسیب پذیری آبخوان دشت کهریز با استفاده از مدل دراستیک در محیط GIS

ارزیابی آسیب پذیری آبخوان برای توسعه، مدیریت و تصمیمات کاربری اراضی، نحوه پایش کیفی منابع آب زیرزمینی و جلوگیری از آلودگی این آب­ها بسیار مفید است. در این پژوهش آسیب پذیری آبخوان دشت کهریز در برابر آلودگی، به کمک مدل دراستیک و سامانه اطلاعات جغرافیایی(GIS) ارزیابی شد. در این روش، هفت عامل هیدرولوژیکی مؤثر بر آلودگی آب­های زیرزمینی ترکیب شدند. این هفت عا...

full text

برآورد هدایت هیدرولیکی با استفاده از روش SCMAI ، مطالعه موردی: آبخوان دشت مراغه- بناب (آذربایجان شرقی)

امروزه آب زیرزمینی یکی از منابع اصلی آب آشامیدنی و کشاورزی و دیگر مصارف مختلف برای جوامع بشری است. با افزایش جمعیت و توسعه‎یافتگی جوامع، تقاضا برای این منبع طبیعی مهم و حیاتی و استراتژیک افزایش یافته است. این افزایش با کاهش منابع آبی با صدمه بر محیط آبخوانها همراه بوده است. بر این اساس برای رویارویی با بحران کم‌آبی و جلوگیری از تخریب آبخوان‎ها، مدیریت آنها و در پی آن شناخت دقیق متغیرهای هیدروژئ...

full text

ارزیابی آسیب پذیری آب زیرزمینی آبخوان دشت کردکندی- دوزدوزان با استفاده از مدل دراستیک واسنجی شده

با توجه به این که عمده کاربری اراضی در دشت کردکندی- دوزدوزان به کشاورزی اختصاص یافته است، احتمال آلودگی آبخوان به وسیله آب‌های برگشتی آغشته به کودهای شیمیایی و همچنین فاضلاب شهری و روستایی بسیار بالا می‌باشد. بنابراین ارزیابی آسیب‌پذیری آبخوان برای مدیریت کاربری اراضی و جلوگیری از آلودگی آب‌های زیرزمینی امری ضروری به نظر می‌رسد. هدف اصلی از این مطالعه، تهیه نقشه آسیب‌پذیری منطقه به روش دراستیک ...

full text

بهینه‌سازی روش DRASTIC با استفاده از هوش مصنوعی برای ارزیابی آسیب‌پذیری آبخوان‏ چند‏گانۀ دشت ورزقان

با توجه به افزایش جمعیت و توسعۀ فعالیت‏های کشاورزی و معدنی در دشت ورزقان که سبب افزایش مقادیر نیترات تا پنج برابر استاندارد سازمان بهداشت جهانی (WHO) شده، ارزیابی آسیب‏پذیری و حفاظت از منابع آب زیرزمینی در این منطقه اهمیت زیادی دارد. در این پژوهش، آسیب‏پذیری آبخوان چندگانۀ دشت ورزقان در برابر آلودگی به کمک روش DRASTIC در محیط ArcGIS بررسی شده و بهینه‏سازی روش DRASTIC با استفاده از مدل ANN صورت ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 24  issue 94- زمین شناسی مهندسی و محیط زیست

pages  169- 176

publication date 2015-02-20

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023